A Bayesian approach to phylogeographic clustering
نویسندگان
چکیده
منابع مشابه
A Bayesian approach to phylogeographic clustering.
Phylogeographic methods have attracted a lot of attention in recent years, stressing the need to provide a solid statistical framework for many existing methodologies so as to draw statistically reliable inferences. Here, we take a flexible fully Bayesian approach by reducing the problem to a clustering framework, whereby the population distribution can be explained by a set of migrations, form...
متن کاملA Bayesian Approach to Two-Mode Clustering∗
We develop a new Bayesian approach to estimate the parameters of a latent-class model for the joint clustering of both modes of two-mode data matrices. Posterior results are obtained using a Gibbs sampler with data augmentation. Our Bayesian approach has three advantages over existing methods. First, we are able to do statistical inference on the model parameters, which would not be possible us...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA BAYESIAN APPROACH TO COMPUTING MISSING REGRESSOR VALUES
In this article, Lindley's measure of average information is used to measure the information contained in incomplete observations on the vector of unknown regression coefficients [9]. This measure of information may be used to compute the missing regressor values.
متن کاملA PAC-Bayesian Approach to Formulation of Clustering Objectives
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of goo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interface Focus
سال: 2011
ISSN: 2042-8898,2042-8901
DOI: 10.1098/rsfs.2011.0054